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ABSTRACT

Diffusion coefficients are computed for a typical ZPPR

lattice cell using the methods of Benoist and Bonalumi. It is

noted that the diffusion coefficients, D. , for leakage normal

to the plates, as defined by Benoist and by Bonalumi, are both

double-valued. The spread between Benoist's x-diffusion coef-

ficients is, in the ZPPR cell, half as large as the difference

between D and D . Bonalumi's x-diffusion coefficients are

much farther apart, the interval between them being considera-

bly larger than the difference between D and D . Neither the

Benoist nor the Bonalumi method yields homogenized diffusion

coefficients which preserve fluxes, reaction rates, or eigen-

values. A modified definition of homogenized diffusion coef-

ficients is proposed for one-group problems. The modified

parameters are defined so as to guarantee that eigen yalues are

preserved in the homogenization process. It is felt that

generalization to the multigroup case will not be difficult.

The relation between the new diffusion coefficients and the

Benoist coefficients is discussed.





I.	 INTRODUCTION

In published work on the analysis of ZPPR critical experiments '

anisotropic diffusion has, so far, been neglected. Such an approach seems

reasonable in a first approximation since, at the high energies where most

leakage occurs, the ZPPR fuel plates are optically thin. Recent Argonne

calculations indicate, however, that in the range from 1-10 MeV, the dif-

fusion coefficients parallel to and perpendicular to the plate surfaces

may differ by as much as 4%, and that in some ZPPR assemblies this dif-

ference will induce an 0.8% change in k eff .
2 

Thus, while anisotropic

diffusion effects in ZPPR criticals are normally not very large, neither

are they negligible.

A great many methods are available for the treatment of anisotropic

diffusion in heterogeneous assemblies. It is not our intention here, how-

ever, to survey all these methods or to elaborate the intricate relations

between them. Instead we focus our attention on only two, namely, Benoist's

method
3
 and the more recently developed method of Bonalumi.4

Benoist's method is well-known and has been widely used, apparently

with great success. Nevertheless important questions about the accuracy

and range of validity of this method remain, and seem to require further

attention. One finds, for example, that there is in the literature no

detailed analysis of the accuracy of the Benoist method in slab cells like

those of the ZPPR lattice. It may be argued that, if Benoist's method is

adequate for the treatment of thermal reactor lattices, it must surely be

adequate in ZPPR lattices where the fuel is relatively thin and hetero-

geneity effects are relatively small. But, precisely because the fuel

plates are thin, the flux in and near the plates is highly anisotropic5





whereas Benoist's method is based on the approximation that it is iso-

tropic.	 It seems proper, then, to question the validity of this as well

as other Benoist approximations before relying on the Benoist method for

the analysis of ZPPR critical assemblies.

A more fundamental question is raised by Bonalumi,
4
 who objects to

Benoist's definition of effective diffusion coefficients, and proposes

another. Benoist's and Bonalumi's methods do not differ radically from

each other, and they share with other methods some seemingly universal

features. Apparently all methods discussed in the literature on aniso-

tropic diffusion assume, first, that in the lattice an overall buckling,

B, is superimposed on a periodic flux; secondly, that the leakage asso-

ciated with this buckling can be expanded in a Taylor series in the com-

ponents of B; and, finally, that the buckling is small enough so that

only leading terms in such a series need be retained. But the methods

of Benoist and Bonalumi, despite these similarities, yield diffusion

coefficients which, in a typical ZPPR lattice, are substantially dif-

ferent from each other. Clearly, then, one is called upon to establish

a rationale for choosing between these methods before either is used for

the analysis of ZPPR critical assemblies.

It should be noted that both the Benoist and Bonalumi definitions

give us double-valued diffusion coefficients, though this point seems to

have been overlooked in the literature. We shall see that the spread

between the permissable values of D normal to the plates is rather large

if we accept Bonalumi's definition. If instead, we accept Benoist's

definition, this spread becomes considerably smaller.

Both the Bonalumi and Benoist definitions of D seem somewhat arbi-

trary. We shall show that, in a nonmultiplying medium, neither yields
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fluxes and absorption rates which match those in the original hetero-

geneous lattice, and neither gives the right eigenvalue when fission is

present. Thus, there seems to be room for still another definition and,

in closing, we propose a definition which, in one energy group, does give

the right eigenvalue. It seems likely that this definition can be reformu-

lated easily for multi-energy problems, though this has not yet been done.

II. THE METHODS OF BENOIST AND BONALUMI IN SLAB LATTICES

We begin by deriving Benoist's and Bonalumi's equations specialized

to slab lattices. Of course, derivations for general geometries already

exist in the literature. It is our purpose, in rederiving these equa-

tions, to develop our notation and to exhibit all implied approximations

as clearly as possible.

In one energy, with isotropic scattering, the transport equation

takes the form

o • vF(r,) +
t
F(r,Q)	 =	 (1/47)E (r)(1)(r) + (1/47)S(r) . 	 (1)

s — —

We assume that, in the slab lattice,6

S(r)	 = q(x) cos (B • r)	 = Rfq(x)	 ,
	

(2)

where q(x) has the periodicity of the lattice. Correspondingly,

F(ri) = Rif(x,s1' )	 ,
	

(3)

and

= 12{x(x) ei!•11}
	

(4)

5





where, again, f and x have the periodicity of the lattice. Note that

f and x are generally complex.	 Inserting Eqs. (2), (3), and (4) into

Eq. (1), we find that

a • vf(x,o) + [i_ t (x) + i(a • B)jf(x,a) = (1/40E sx(x) + (1/47)q(x) .(5)

Let

R(x,)	 = Rif(x:i)1,	 I(x,)	 =	 Ilf(x,)1 ,	 (6)

p (x)	 =	 R{x(x)},	 4,(x)	 =	 Ifx(x)1 •	 ( 7)

Then, from Eqs. (5) and (6),

o • vR(x,Q) + E t R(x,s-/) =	 (1/47)E s (x)p(x) + (1/47)q(x)

+ (ç 	 B)I(x,s;) ,	 (8)

11 • VI(X, 'S2) + E t I(X,)	 =	 ( 1/4)E(x)(x) -	 • B)R(x,S-2) •	 ( 9)

Now we expand R and I in Taylor series in the two variables B and B

R(x,s:2) = E	 ,
n,m=0

I(x,a) = E Bneyn,m)(x,.,-) .
Y

It can easily be shown that 1 (0 ' 0) = 0, and that the leading terms in

Eqs. (10) and (11) satisfy the equations:

=	 R(°'°) + 1— q(x)aR
(0

'
0)

+ E R
(0

'
0)

3X	 47	 47

(10)

(12)
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I(0'1)	
2 R(0,0)aI

(0,1) 

+ t I
(0,1) . Es

, (see Ref. 7)	 (13)
ax	 47

(1 0)
aI	 '

I
(1

'
0) 

= 
E	 Is Jr "	 (1 0)

ii +
t
	- pR

(0
'
0) 

,
3x	 47

Ii	 C	 0.

From Eqs. (3), (6), and (7) we see that, to first order in B,

F(r,O)	 =	 R (C) '° ) cos (B • r) - I	 sin (B • r) ,	 (15)

I I	-	 BI
(1,0) 

+ B
x 
	 I (°' 1) .

The current, J, is, by definition, given by the expression

J = .1% (JO' ER (°'° ) cos (B • r) - I i sin (B •

= J,.0 cos (B • r) +	 sin (B • r) ,	 (17)

	

-	 -	 (,10 E 

Jr 

St do R
0 

' 0) ,	 Jj E -	 O do I I .

Let x and x
R
 be

'
 respectively, the left- and right-hand cell boundaries.

8

Since we are dealing with a lattice consisting of infinite slabs, we may

define the upper and lower horizontal boundaries arbitrarily. In any

case the net leakage, L, out of the cell is given by the expression

L

 =f
V • J dv

cell

(14)

where

where

(16)

(18)





E
J cos (B • r)] dv =_o

Jcell (/x)[±0 cos (B •r	 = 0 . (19)

Now we note, first, that R (°'° ) satisfies reflecting boundary conditions

at	 and xR . Secondly (since R (°'° ) is the flux in the cell when B = 0),

it is clear that 10 lies in the x direction, i.e., 110 = lox . Therefore,

-71

Thus,

L =
 

fell 

v	 [3_ sin (B •	 dV .	 (20)

Carrying out the differentiation indicated in Eq. (20), we find that

L = cos (B • d[BxJ ix + BxJ 1 -yi dV +	 Ji	 .fcell	 f	

sin (B • r)v •	 dV	 (21)
ell

From Eqs. (13) and (14) we deduce that

j1,21
	 _ fs.2x/(0,1)	

(22)

12	

_	 /(1,0)	 = 0 .
(23)

Therefore,

1(1,0) ,1-.2	 (24)J
lx 

= x	 x	 Bxj1,11

J
ly	

- B	 I	 '	 11-2	
y
j
1,22Y	 Y 

(0 1) -
	

B
	

(25)

Above, in Eqs. (22)-(25) we have made contact with Benoist's notation:

the quantities i
1 k'k 

have precisely the same meaning here as in
-, 

Benoist's papers.
3 For those not familiar with Benoist's work we point

out that the subscript 2 in the symbol j 1,21 indicates that the current
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j	 is produced by a source having Q as a factor [see Eq. (13)] . The
1,21	 Y

final subscript, 1, indicates that i-1,21 is a current in the x direction.

Subscripts in the other quantities i 1 1C1( have similar meanings.
-, 

Since J is independent of y
—4

V • gl = Bx (VDx)j 1,11 .	 ( 26)

Substituting from Eqs. (24), (25), and (26) into Eq. (21), we find that

L = Jr cos (3 • r)2
cell	 j1,11	 B;j1,22] dV

+
x

sin (B • r)(D/ax)j
1,11 dV

fcell

Let n be the midpoint of the cell, and assume (as we will in all our

future work) that the cell is symmetric. Expanding L in a Taylor series

in B and B, and retaining only leading terms, we find that

L = cos (13 • re)"	 [B2j+ B 2 j	 dV
x 1,11	 y 1,22cell

+ Bx sin (B •)(Vax)j 1,11 dV
cell

Jr
+ fi cos (B • rD )	 cx - xdo/ ax ) i 1,11 dVc 

cell

+ B B cos (3 • ro)jr	 (y - y0)(D/Dx)j
1 11 

dV .	 (28)x y cell

Since i
1
	is independent of y the last term on the right-hand side of

-,11

Eq. (28) vanishes, and since j1 	 is a periodic function of x, the

second term also vanishes. Thus,

(27)
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L = cos (B • ro) CB'	 j
1,11 

dV	 (x - x0)(Vax)j
1,11 dV

	

cell	 cell

B2 jrY cell l '
22 c11/1 .

It should be noted that Eq. (29) is an exact expression for the leakage

(in the limit B , B	 0) if the series in B and B converges.
x y

At this point Benoist asserts that effective diffusion constants

must satisfy the relation

L = ID B 2 + D B 2 ) 
J

(r) dV
txx 	 cell	 —

where, as in Eq. (1)

gr) = irF(r,i2) dc? .

From Eq. (15) it is clear that

(PM = cos(B • r)i R ( °'° ) 6 - sin (B • r)f I I 6 .

But I I , as defined in Eq. (16), is first order in B. Therefore, neg -

lecting higher-order terms,

-

	

(t
f

(r) dV = cos (B • r,)	 dVIR(0'0)

cell

	

	
do

jrcell

= cos (B • ro) f	 ct, dV ,	 (33)
cell

= i

- (0
do R	

0)
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(30)

(31)

(32)
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Thus, to leading terms,

L	 (Dxti + Dy B;)c os (B • r_o)f	 0(r) 	 dV .

cell

Comparing Eq. (34) with Eq. (29) we conclude that

J111	
0	 ,D	 = DI	

'cell'cell
dV +	 ( x - xo)(3/3x)j

1,11 dV	 (35)

cell
dV

cell

D	 = 0 2	 ji	 J
1 22 

dV/f	 dV 
.•cell	 '	 cell
	 (36)

Given that

3 1,k',k 
= 0 •	 k'	 k	 (37)

from Eqs. (22) and (23), and that

	

= °

	
(38)

from Eq. (26), one sees that Eqs. (35) and (36) are precisely, Benoist's

equations for D / and 02 specialized to a slab cell. 9

Certainly it is possible to solve Eqs. (12), (13), and (14) in their

present form (by discrete ordinate methods, for example) and to compute

diffusion coefficients from Eqs. (35) and (36) directly. In the interests

of efficiency, however, Benoist chooses to develop a computational proce-

dure based on specially designed collision probability techniques. To

facilitate the use of such techniques he introduces various approxima-

tions which we discuss next.

-10

(34)





ah ,p —
t	

= - (1) ,

3x

(0,1)	 -(0 1)
1	 Eoh. ( 1 3 )

12
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It is easy to show that I
(0

'
1)

, defined implicitly via Eq. (13), is

proportional to Q, i.e.

(0 1)	 Dh	 (0 0)I '	 = R h(xt) ,	 p -- +
t
h = -R '

3X

and it follows that the scattering term in Eq. (13) vanishes. We will

assume, in Eqs. (13) and (14), that R (°'° ) is almost isotropic, and

replace 
R(0,0)

with the scalar flux, t. In this approximation we may write

(39)

Clearly, Eq. (13') can be solved without difficulty through the use of

collision probabilities.

Now suppose that we set out to solve Eq. (14), as well, by collision

(0
probability methods, with R ,0) replaced by rt. We see that the "uncollided

flux," 1 (1 ' 0) , produced by the source p(1), is given by the expression
unc

I
(1

'
0)	

=	 p	 ,
unc

where, again,

ah
p — + E h = -t .

ax

If we assume that h is isotropic, as is usual in collision probability

calculations, then 1 (1 ' 0) is proportional to u and the scattering integral
unc

again vanishes. Thus, the uncollided flux is the whole flux and we may

write

ah(0 1)	 -(0 1)
— + Eh =	 ,	 I '	 I '	 E ph . (14')





D I = jij	 cilif	 0 dV

c	

,

ell 
1

'
11 cell -Jo 

10 )	 "I	 'dQ , (35')j1,11

02 =J
1 22 

dV,// 	dV
cell	 '

_f s_2 i(0,1)
J1,22

, (36')

13
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It turns out that, if the scattering is not isotropic, and	 is the mean

cosine of the scattering angle, then

..
ah	 "

= uz t 1 - -	 ( 1 0)	 -0. 0)	
_

I, — + E
t
h 	 —	 h ds. - cp ,	 I '	 ',1; I '	 E uh ;

ax	 47

but anisotropic scattering is a nonessential complication here and we shall

continue to assume that the scattering is isotropic.

The numerator on the right-hand side of Eq. (35) contains two terms:

the first is the volume integral of j
1
	a quantity readily computed by
,11'

collision probability methods. The computation of the second term is

somewhat more difficult. One finds, however, that the second term is often

small and the neglect of this term is generally considered to be part of

what is called "Benoist's Method". In brief, then, Benoist's approximate

diffusion constants are given by Eqs. (35') and (36),

with 1 (1 '0) and 1 (0 ' 1) determined by Eqs. (13') and (14'), respectively.

On retracing the arguments that lead from Eq. (18) to Eq. (35), it

will be seen that, to leading terms in the components of B,

D
x
 _ D I = ji	 Wax))..1 )	 B2I	 dV .

xcell	 x cell

This expression for D x follows directly from Eqs. (18) and (30). Undoubtedly

Eq. (18) is a valid expression for the net leakage from the cell, but it

is not clear how Benoist arrives at Eq. (30). In Benoist's published work

(40)
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the relation is postulated without discussion.	 It is possible that Benoist

considers that Eq. (30) is intuitively obvious: but, on the other hand,

Bonalumi rejects this relation completely. Instead Bonalumi takes, as

his definition of D , the expression

Dx (BON) =	 Jx(xR,y)

T = xR -	 .

1 

B
X 

f [ (	 ) 	 (XL )] 	 1L 
$	 (41)

yu (I, xR ,y - (1)	 ,y	 dy

Here yu and	 are, respectively, the y coordinates of the upper and lower

cell boundaries. It is easy to show that in slab geometry the right-hand

side of Eq. (41) will be independent of the values chosen for these coor-

dinates. After trivial manipulation we find that

Dx (BON)	 =	
1, 11 ( x 13.)	 (xi3) '

	
(42)

where x
B 

is the x coordinate of either cell boundary.
10

In Eq. (42) we have

used the notation D (BON) to make a sharp distinction between Bonalumi's

D and the diffusion coefficients derived from Benoist's postulate, Eq. (30).

As was apparently first pointed out by Bonalumi,
4
 Eq. (35), the equa-

tion defining Benoist's "exact" diffusion coefficient D I , can be cast into

a form quite similar to that of Eq. (42). After integrating over y in

Eq. (35), then integrating by parts over x, we find that

D 1 	 i1,11(xB)he11

fxR 4)(X) dX/T .

L

	 (43)





It will be seen that Eqs. (42) and (43) are identical except that in

Eq. (42) the denominator is the cell-edge flux while in Eq. (43) it is the

average flux. For this reason Bonalumi refers to his diffusion constant

as "cell-edge normalized".

Perhaps it is fair to say that both Eqs. (40) and (41) seem perfectly

plausible as definitions of the x diffusion coefficient. In arguing for

the use of Eq. (41) in place of Eq. (40), Bonalumi asserts that the cell-

edge normalized D. (BON) satisfies Selengut's equivalence relation
11
 while

Benoist's D I does not, but this assertion is stated without proof. The

relation between Benoist's and Bonalumi's x diffusion coefficient will be

discussed further in later sections.

III. DOUBLE VALUE OF D
x

In Eqs. (42) and (43) various fluxes and currents are evaluated at

the cell boundary. But in a symmetric cell there are two different sets

of symmetry planes and correspondingly, two sets of cell boundaries (see

Fig. 1). Thus there are two possible values of D I , and of D. (BON).	 It

is easy to show that this ambiguity in the x diffusion coefficient is not

simply due to a weakness in the definition but is inherent, in a sense,

in the underlying physics. Suppose that z(x) is the cross section for

some arbitrarily chosen reaction in the lattice. Then the average reaction

rate, A(x 0 , B 2 ), within the cell is given by the expression

A(x 0 , B 2 ) = fR dx E(x)f dc2 F(x,)/T
	

(45)

A(x 0 , B 2 )	 =	 ( 1/ T )	 dx E(x)fios iBxx)R(x,) - sin IBxx]I(x,-).] c:12 .(46)
XL

15
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Here we have arbitrarily set yo = 0; note that A(x 0 ,B 2 ) is a function of

xo in the sense that it is the average reaction rate in a cell whose center

is at xo. Equation (46) is obtained by substituting from Eqs. (3) and (4)

into Eq. (45). Now assume, for the sake of simplicity, that B y = O. One

can then show from Eqs. (8) and (9) that o(x) E I d 'sZ I(x, 11) is antisymmetric

in x about xo. It follows that, to order B2,

cos (B x 0 ) Ox
A(xo,B 2 ) =

XL

dx E(x)p(x)

dx (x - x0)2E(x)11)(x)
2

- sr dx (x - X0E(X)p(X)

/.

	 (47)
l,

Note that, since gx) is of order B, the last term in brackets is actually

of order B 2 , so that we may write

cos (B x0)
A(x 0 ,132 ) - 	 	 dx E(x)p(x) - c 8 2.] .	 (48)

Here, of course,

p(x)	 (L2 R(x,11) ,	 4(x)	 E	 d's2 I(x,p) ,

Jr	 Jr	
(49)

and

	

C E lfxR dX(X - x 0 ) 2 (x)p(x)	 dx (x - x 0 )E(x)9(x) .	 (50)
2

xL XL





Since 2. and p have the periodicity of the lattice, the integral in Eq.

(48) is uniquely defined. On the other hand, it is clear from Eq. (50)

that c can have either of two possible values, one for each of the two

possible definitions of the unit cell.

Thus, the reaction rate (regarded as a function of xo) has a cosine

distribution over the lattice but there are two possible values one can

assign to the amplitude of the cosine. Accordingly there will be two

sets of "equivalent" homogenized cross sections which give reaction rates

that match the cell-averaged reaction rates in the lattice. If the reac-

tion rates and fluxes in the equivalent homogenized medium are to be cor-

rect at 8 2 = 0, and if the effective cross sections are to be independent

of buckling, then we must take

= rR E(x)cp(x) dx/Tj 

to be the homogenized reaction cross section. The two possible values

of c then determine two diffusion constants, both equally acceptable.

When, as is customary, we neglect the second term in the numerator

Eq. (35), then the diffusion coefficient is uniquely defined by Eq. (35').

It follows that, when such an approximation is valid, the difference be-

tween the two possible values of D I must be small. If, to the contrary,

this second term is not negligible the spread between possible D I values

may be significant. Usually j 1,11 
will be positive for all x, and in such

cases D I will lie between these two possible values.

17
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IV. NUMERICAL RESULTS

We propose, in this section:	 (1) to investigate the accuracy, in a

typical ZPPR lattice, of the various approximations which are usually con-

sidered to be part of "Benoist's Method"; (2) to examine the differences

in numerical values of D computed via cell-edge and cell-averaged normali-

zation; and finally, to determine how large an uncertainty is introduced

into D by the ambiguity in the definition of cell boundaries.

A. Diffusion Parallel to Plates 

It turns out that cell-edge and cell-average normalization give the

same expression for D , so that there is, in this case, no difference be-

tween the definitions proposed by Benoist and Bonalumi. Both lead us to

Eq. (36). After carrying out the y integration in Eq. (36) we get

D =
I"( R

j	 dx,/ifkR dx .
y	 1,22

XL	 xL

Since D depends solely on integrals over the cell, and not on point

values, it makes no difference which of the two alternative sets of sym-

metry planes we choose as cell boundaries: both choices give the same

D . On the other hand, there is, of course, a difference between D and

0.

In a series of numerical experiments we have used the ANISN code
12

to compute the functions h and h. This can be done, of course, in many

ways, but we find it convenient to adopt the following procedure:

(1) We treat Eqs. (12) and (39) as the Group 1 and Group 2 equations,

respectively, of a two-group set, with E ls:2 = -(2t + 1)12. Here E ls:2 iS

the t'th Legendre component of the scattering cross section from Group 1

into Group 2.

18
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(2) Equations (12) and (13') form another two-group set, but in this

..
case z 2 = -(1/2), E 

12
	 0, 2. > 0. With h and h known, D 2 and 02 can

be determined from Eqs. (36) and (36') respectively.

Coefficients D 2 and 02, for diffusion parallel to the plates, have

been computed in this way for a typical ZPPR cell configuration. The cell

geometry is sketched in Fig. 1, and all relevant problem parameters appear

in Table I. Cross sections in this table are spectrum weighted over the

range from 1 to 10 MeV but it is felt that details of the origin of these

cross sections are not important here. We are interested only in an esti-

mate of the accuracy of Benoist's diffusion coefficient rather than the

exact value of this coefficient in some particular lattice.

To compute D we have solved Eqs. (12) and (39) in various S n approxi-

mations characterized, in Table II, as DP 3 -P 7 , DP 4 -P 9 , and DP 5 -P 11 . Here

the designation DP 5 -P 11 refers to an Sn approximation with

(1) 12 double-Gauss quadrature weights and ordinates, appropriate

to a double-P 5 approximation; and

(2) delta-function scattering from Group 1 into Group 2, repre-

sented in a P 11 approximation.

The other designations have corresponding interpretations. In the compu-

tation of 6 2 , Eqs. (12) and (13') were again solved in DP 3 , DP, and DP5

approximations, but with anisotropic scattering from Group 1 into Group 2

suppressed, as indicated in the lower rows of Table II. It is very clear

from Table II that Benoist's method, which yields D 2 instead of D2, is

extremely accurate in this case despite the strong anisotropy of the

angular flux.





B. Diffusion Normal to Plates 

Making use of the knowledge that 
I(0'1) 

is proportional to Q, it

is possible, as we have seen, to compute this quantity by solving Eq. (39)

on standard S
n
 codes. Similarly standard S

n
 codes can be used to solve

Eq. (13') for h which, then, gives us both I (0,1) and i (1,0) . The compu-

tation of 
I(1,0) 

is slightly more difficult.

The quantity I (1 ' 	 is determined by Eq. (14), which differs from

the usual neutron transport equation in two respects. First, the coupling

(0
term, pR

,0) 
cannot be developed in a Legendre polynomial expansion of

the required form, i.e.,

pR
(0,0)	E 2R.	 + 1	 (o,o)j Esi Rt	 Pz(p)

,=o	 2

	

for any set of numbers E 	 Secondly, one can show thatsz'

(1 0)	 (1 0)
I	 '	 (x,p)	 =	 -I 	 (x,-p) ,	 x = xi, or x = XR .	 ( 53)

Equation (53) defines a boundary condition ("antisymmetry condition")

which is not available in standard S
n
 codes. On the other hand, it is not

difficult to write a two-group S n code which permits the imposition of

"antisymmetric" boundary conditions and, in addition, includes the term

pR(0,0)
as a source into the second group. Such a code has been written,

and used to solve Eqs. (12) and (14).

Essentially three different approximations are involved in the pro-
,.

cess which takes us from D I to D I . First, one neglects the second term

in the numerator of Eq. (35): second, one replaces the source term

pR (°'° ) with the source term 14: finally, the scattering term in

Eq. (14) is deleted. Since the angular flux in the test problem

20





21

-1 GB

configuration is highly anisotropic, it is interesting to ask how much

error is introduced into the effective diffusion coefficient by the second

step alone.

Suppose that, in Eq. (14), we replace 1,12 (°'° ) by u(1) without making

any other changes. Define a function T (1,0) such that

s	 chl't i (1, °) - u(1) •"ti
47

Let

3 1,11 = -f
	

ch--t i(1'°)

and

Jr(
R =

DI	 =	 ,
J 1,11 dx//.1:	

dx
1, (/)

XL

j	 dx/fxR (1) dxu.

We see that the difference between 5 1 and D I reflects only the effect of

anisotropy in R(0'0).13

Values of 5 1 and 5 1 , computed in various Sn approximations, are

listed in Table III. 	 It will be seen that the anisotropy in the source

term has no appreciable influence on the integral of the effective cur-

rent
-1,11' It 

seems remarkable that this should be true, in view of

(00)	 .
the fact that the flux, R ' , Is so strongly anisotropic.

while

D I

(14")

(35")

(35"')





In Table IV we list values of D computed according to various

prescriptions. Diffusion coefficients which appear in the first row of

numbers are computed from the Benoist definitions: D ?I'ix B) and 4(x B) are

i"exact" Benoist diffusion coefficients, defined in Eq. (43), while D / s

the "approximate" Benoist diffusion coefficient defined via Eq. (35').

It is this last diffusion coefficient which one would refer to, customarily,

as the diffusion coefficient given by Benoist's method. We see that

A
D i (xB) and D i lx B) differ by about 2%. On the other hand, since D2 q" 2.88

(see Table II), D I and D2 differ by about 4%. Thus, the magnitude of the

anisotropic effect is uncertain by 50%.

If, in Eq. (14) we simply replace the coupling term, ilR' 	 by the

approximate coupling term 110, as in Eq. (14"), we get I (1 ' 13) in place of
/(1,0).

Suppose that we use the currents3111(x) to define diffusion
,a

coefficients in place of the "exact" current 
j111(x)' 

Diffusion coeffi-
-,a

cients so defined are listed in the second row of numbers in Table IV. As

one might expect, the anisotropy of the flux has a much greater effect on

the value of j
1
	at individual points than it has on the volume integral
,11

of j
1,11 

. In fact the use of the scalar flux instead of the angular flux

cuts in half the spread between the two permissible diffusion coefficients.

It turns out that the scalar flux, (I), varies much more over the test

problem configuration, than does the effective current j As a result
-1,11'

the two cell-edge normalized diffusion coefficients, which appear in the

last row of Table IV, are much farther apart than the corresponding coef-

ficients as defined by Benoist. Moreover, they are much farther apart

than the Benoist x and y diffusion coefficients, D I and D 2 . Thus, the

spread between permissible values of the Bonalumi x diffusion coefficient

totally obscures any anisotropic diffusion effect in the ZPPR lattice.
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V. CRITERIA FOR THE VALIDITY OF THE HOMOGENIZATION PROCESS

We see that there are substantial differences between the x diffu-

sion coefficients as defined by Benoist and Bonalumi. Certainly we are

left in an awkward position if we accept Bonalumi's definition, since the

spread in permissible x diffusion coefficients is, then, so large. It

does not follow, however, that Bonalumi's definition is wrong, or that

Benoist's definition is right.	 In fact we have, at this point, adopted

no criterion by which to judge either definition.

It is true that Selengut's equivalence principle
11
 leads unambiguously

to a definition of effective diffusion coefficients in certain circumstances.

Selengut assumes, in Ref. 11, that diffusion theory is valid and that the

absorption cross section vanishes. The direct application of Selengut's

principle under more general conditions is not an entirely straightforward

extension of his work and we prefer, here, to explore other approaches.

A.	 Assessment of the Performance of Homogenized Diffusion Coefficients 

Consider, again, the one-energy transport equation, Eq. (1), and

assume for simplicity that B = 0. Given a lattice cell with boundaries

at xi, and x
R
, define

(T)
HET
	

HET
(x) dx/T .	 (54)

Here N
ET

(X) is the scalar flux in the heterogeneous assembly and T = x
R
 - XL

It is clear that

T
HET	

1:7,1/r	 + 018;1L .	 J (55)

where





= (Bx) dx/Tq(x) cos (56)Q

XL

fa = fxR 4)(x)E a (x) d	 fkR (1)(x) dx (57)

XL

D I = jfxR (a/ax) J x dx/jrxR cp ( x) dx .
xL

(58)
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It will be seen, on comparison with Eq. (40), that D I is precisely the x

diffusion coefficient as defined by Benoist, but it should be noted that

-
Q and T

a 
are functions of the buckling. To order B2

6 = 6 (0)	 Q (2) B 2	 Q(0)	 E, cos (Bx o ) ,	 E	 R q(x) dx/T ,	 (59)

and
	 XL

E
a
(0) 

=

xL

4(X)E(X) dx/ j(kR 4(x) dx . (60)la =	 ( 0)	 E(2)B2

Thus we may write

[6(0)	 Q(2)B21

(T) (61)
HET•

p ) + [ E (2) + DI1B1
La	 a

In the homogenized assembly one generally takes, as the effective absorp-

tion cross section, the quantity

1 a,
R (X)E

a
(x) dx f, (1)(x) dx

E 1 HOM	 XLJfk

=	
(0)

 E
a

while the source density is given by the expression

(62)
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QHOM = (
-I cos (Bx) .	 (63)

Expanding in powers of B and averaging over the cell we find that

Q 
HOM	

Q
(0) 

- (1/24)B2 T 2 E1 cos (B)(0)

= Q
(0) 

- (1/24)T 2 B 2 Q
(0)

 .

Thus, given a homogenized x diffusion coefficient Dx,

T	 - 
- ( 1/24)T2B2Q(01

HOM	
(

aO)	 Dx13]

If a a Q (2) - (1/24) T 2 Q (()) , then

Fi
l? (0) 	 Q(2)B2 _ B2rd

HOM

PC)) + D 131_a	 x

so that, to order B2,

(0)	 Q
(2)

13
fl

:(0)	 (0)(	 (WTI+ D + E	 A/Q
a	 x	 a

From Eqs. (61) and (67) it is clear that T	 and T
HET 

will be different
HOM

unless

D	 = D + E (2) - E M (A/Q (° ) ) .1	 a	 a

We see that if the effective absorption cross section and the source

are defined as in Eqs. (62) and (63) respectively, then both the Bonalumi

and Benoist prescriptions will yield incorrect average fluxes within the

HOM

(64)

(65)

(66)

(67)

(68)





boundaries of each cell. Further, even if we were to use Eq. (68) to

define an effective diffusion coefficient (again double-valued), the

absorption rate, AR, in the cell would be given, to order B 2 , by the

expression

(2)-
AR =	

((0)
Ea 	

.1-E	 13
2

11)	 T
a	 HOM '

and

(0)-
AR	 E

a BOMT
 .

We do not mean to suggest, at this point, that a prescription involving

a buckling-dependent absorption cross section would actually be practical.

Rather it is our intention to point out that the defects in present

homogenization schemes will not be easy to remedy.

When B = 0, B	 0, we again find, by similar arguments, that the

Benoist method gives an incorrect average flux in the interval which cor-

responds to the extent of any cell. In this case, however, it turns out,

when one uses Benoist's D2 as the diffusion coefficient, that E (C1)-4;	 (r )
a HOM —0

is the correct average absorption rate in the cell centered at a. Again
we recall that the Benoist and Bonalumi D are the same.

It seems important to be aware of these deficiencies in the Bonalumi

and Benoist methods, deficiencies which we have noted in the Bonalumi and

Benoist treatments of the inhomogeneous transport equation. But it is not

necessarily true that one should go so far as to redefine diffusion coeffi-

cients with the inhogeneous transport equation specifically in mind. In

fact it may be better, at this point, to turn our attention from inhomo-

genous to eigenvalue problems.
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B.	 Reformulation of Definition of Effective Diffusion Coefficients 

In our notation the one-group transport equation with fission and

isotropic scattering takes the form

u(aR/ax) + E tR =	 (z/4J. + (1/x)(vzf/47),t, + (Q • B)I , 	 (70)

AaI/ax) + E t I = ( Es /411, + ( 1/A)(vEf /411q, - (S2 • p)R ,	 (71)

where

4) =IR clQ	 (72)

and

ty	 E	 I cIC2 .	 ( 73)

Suppose we consider the term (Q • B)I in Eq. (70) as a perturbation,

defining "unperturbed" eigenvalue equations as follows:

p(ai/ax) + E tR = ( E s /41; + ( 1/A 0 )(vz f/411) ,	 (74)

u(3i/Dx) + E t i =	 ( s /4T1) + (1/x 0 )(vE f/41-1, - ( c • B)R .	 ( 75)

It will be seen that each unperturbed eigenvalue, A 0 , is actually degenerate

with eigenvectors

y_1

	

[i
	

•	 -v-2 =	

ro)	
(76)

The unperturbed adjoint equations appear below:





U(x,s1)V(x,s1) dx .(uv)
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- p(ii*hX) + E t * = [ E s/4n) -0* + ( 1/A 0 )(vE f/4n 	 • B)I* ,(77)

-p(ai*/3x) + E t i* = ( E s/4*	 (10, 0 )(v E f /4/1 *	(78)

Again, for each Ao there are two eigenvectors which we may write as

follows:

r-	 ,1

V* = 
IR(-01

V* = —20	 R(-0

Let

10	 -	 • B)
AH =

0

It is easy to see that

o ,	 i	 j ,	 (80)

(14(H)li ) = 0 ,	 I	 j	 (81)

Here

(79)

Further one can show that

(Vt(AH)V i)	 (yi.0112›

K
ri { vE f ilLt I) = (y_.2,(vzfi) n±2),





where I is the identity operator. Therefore it follows from degenerate

perturbation theory that there is only one perturbed eigenvalue, given by

the expression

(1/A) = (1/A0) 4- (Vt(a)V1)
/ 

(
v-t (vEfi ) 11) •

More explicitly

(1/ -/)	 (1/A0) -fdQfxR	B)I() dx/F .

Here

F
 E T

R (vE)c; 2 dx .
xL

Define I and I such that

u(3I x/Dx) + E t . =	 (E s /41T)4,	 (1/X0)(vEf/4n)q) - uB.li

w(I y/ay) + E t I y . - Qy By R ,

Jr
.	 ds-2 I x .

It can easily be shown that Eqs. (84) and (85) do have solutions, des-

pite the fact that (1/A 0 ) is an eigenvalue of the corresponding homo-

geneous equations. Further I = I + I and, finally,x	 y

-)1 
ds2	 R(-0st( • B)I(Q) dx =
- fxR -	

132, I. 132T^
xx	 yy
	 (86)

where

-
	 dsl

xR lift( 11)i (y) dX/F
xL

E — fcth	 R(-w)I (0) dx/F .
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(82)

(83)

(84)

(85)





—7(0)
vt f 	_

7(0) =

-
D
(A) 

= r- I d ifxR	 () dx1 jrR 1vEf)0(x) dx

 Lij
	 x xL XL 

ivEfi1 0 2 (x) dx , (92)

From Eqs. (83) amd (86) it follows that

(1/x) =	 (1/X 0 ) + B 2 + + B 2 + 	.x x	 Y Y

Now

---(7/ —(0)X0 = vE
f 	E a

30

(87)

(88)

where

fvEfjcp(x) dx/ixL (0(x) dx	 (89)

f
xR z a(p(x) dx/fR (4)(x) dx .	 (90)

xL

Therefore we may write Eq. (87) in the form

(1/A)	 =
,	 FET (c)yi(o)i f, , 2 „ B211f	 L-f / a jtxx	 y yji

=	 (C)) + FET (° ;-1T B 2 + Pl;TM 
•i B 2 	(91)

a	 L f _l xx 	f	 YY	 f 

It will be seen from Eq. (91) that, if we take T M and vzr as the "equiva-

lent homogenized' Ea and vE f , respectively, then P (0):1+ plays the role off	 x

D , while EE1T plays the role of D . We are led, then, to define
x	 f	 y	 Y

D
(A)	

=	 - I cist Qy R(-u)I y ( o) d 'xifR (vEf)-(p-(x) dx/TR (vf)E I d) 2 (x) dx .(93)
—XL

Suppose that, in Eq. (82), we approximate the importance function,

V*, by its average over space and solid angle. We find, in this approxima-
—1





3-3-9B
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D (Aj	 R 
j1,11 

dx	 R-cp-(x) dx

xL 	 KL

and,

D(A)	 fxR
1,22 

dxi/TR ." (x) dx .

xL 	 xL

Further, if we now compute j1
	 22 

by Benoist's collision proba-
,

bility methods, D (A) 
and D

0) 
become, identically, Benoist's D I and D.

Thus there is a close connection between Benoist's diffusion coefficients

and the diffusion coefficients required to preserve the eigenvalue during

homogenization. Perhaps this close connection gives us a justification

of some sort for the use of Benoist's method: at the moment we see no

similar justification for the use of Bonalumi's method.

We digress here to note that the effective diffusion coefficients

defined in Eqs. (92) and (94) differ from those derived earlier by

Williams. 14 On comparing Eq. (77) in Ref. 14 with our Eq. (40), one finds

that Williams x diffusion coefficient, D, is identical with the Benoist

D I . Williams apparently concludes that the diffusion coefficient 6 (or

D I ), used in conjunction with 
7(0) 

and -a
-(0) 

reproduces the hetero-

geneous lattice eigenvalue. Yet it would seem that this cannot be true,

simply because D I is double-valued if for no other reason.

It is difficult to compare Williams' work, in detail, with our own

since the mathematical techniques used here and in Ref. 14 are, formally,

quite different. We believe, however, that the discrepancies between our

results and those reported by Williams can be traced back to a fundamental

assumption embodied in Eq. (3) of Ref. 14. Williams postulates that

keff = k.P, where P is the nonleakage probability. We have argued, above,

(94)

(95)





vEffxR^	 (vEf

XL

(A) 

11(X)fid .
L Y

(96)

that keff and k differ, not only because of the direct effect of leakage,

but also because (to order B 2 ) the leakage modifies the effective absorp-

tion and fission cross sections. We see no treatment of such indirect

effects in Williams derivation.

Diffusion coefficients defined by Eqs. (92) and (93) have not yet been

computed for our ZPPR test problem configuration. It is possible, however,

to make a rough estimate of the ratios between these coefficients, on the

one hand, and Benoist's on the other. We have already seen that approxi-

mations based on the assumption that R is isotropic tend to be very accu-

rate. It has also been noted earlier that
-1
	is nearly constant over
,11

the ZPPR cell and, in fact, we observe that i1 
22 

is also nearly constant.
-, 

If it is assumed that R is isotropic, and that both I	 and i	 are
-1,11	 -1,22

constant, we find that

32

In order to make an estimate of the value of the integrals on the right-

hand side of Eq. (96), we assume, further, that 0 is approximately equal

to the scalar flux, 0, computed earlier, in our fixed-source test prob-

lem.	 It will be recalled that, in this fixed source problem, the source

in each region was taken to be equal to vE f in that region. It seems not

unreasonable, therefore, to assume that i and	 have roughly the same

shape. At any rate if we make this assumption we come to the conclusion

that
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rnoo,o_i	 rno),D-d	 0.964
LY

	 (97)

i.e. that Benoist's D's are too small, in this case, by about three to

four percent.

We believe that Eqs. (92) and (93) can be generalized straightfor-

wardly to the multigroup case, at least in situations where the group-to-

group scattering is taken to be isotropic. Generalized versions of these

equations could be used to test Benoist's method, or to correct Benoist's

diffusion coefficients when corrections are deemed necessary. It should

be stressed, at this point, that the proposed new definitions of D and D

are contrived for one purpose alone: they are designed to reproduce, in

the homogenized lattice, the eigenvalue of the heterogeneous lattice. The

eigenvalue in the homogenized lattice will be correct to order B 2 if the

new diffusion coefficients are used in conjunction with the buckling-

independent one-group parameters defined in Eqs. (89) and (90). On the

other hand, edited reaction rates (for any given power level) will not

be correct to order B 2 unless the reaction cross sections are b,Ackling

dependent; and, unfortunately it is not clear that the use of buckling-

dependent reaction cross sections would actually be feasible in the

analysis of real reactors. Thus the new prescription for the computation

of diffusion coefficients shares some of the weaknesses of older

prescriptions.

How important these weaknesses are, from a practical point of view,

we cannot say. Further it should be pointed out that very little is known,

at this time, about the performance of any homogenization scheme near inter-

faces. In view of the difficulty of a more thorough theoretical analysis





it seems clear that, ultimately, only detailed Monte Carlo calculations can

give us the information we need for definitive tests of our and other

homogenization procedures.

VII. CONCLUSIONS

In the particular version of the ZPPR which we have studied here

the probability of leakage out of the core is, approximately, 30%, and

the leakage probabilities in the x, y, and z directions are roughly equal.

Further the Benoist x diffusion coefficient, D I , turns out to be almost

equal to the diffusion coefficient, 5, computed from the flux-weighted

transport cross section. On the other hand, the y and z Benoist diffu-

sion coefficients, 02 and D3, are greater than b by about 4%. It follows

that when we use the Benoist method, taking D I , 0 2 , and D3 (in place of p)

for the x, y, and z diffusion coefficients, we lower the eigenvalue, keff,

by about 0.8%. If, now, we assume that D I is uncertain by 2%, an amount

corresponding to the spread between the two permissible values of D I , we

conclude that keff is uncertain by roughly 0.2%. Such an uncertainty is

not particularly significant, and is fairly small compared to the 0.8%

change in keff caused, in toto (according to Benoist's method), by aniso-

tropic diffusion.	 In contrast the 11% spread in Bonalumi's x diffusion

coefficient gives rise to a 1% uncertainty in eigenvalue, an uncertainty

which is significant, and is no smaller than the whole anisotropy effect.

Moreover Bonalumi's definition of effective diffusion coefficients seems

as appealing, intuitively, as Benoist's.

Since intuition does not seem to lead us to one unique definition of

D I , we have found it necessary to formulate a precise objective of some
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(x	 x°)(i1,11)6x) dx

xL

ADI
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sort for the homogenization process. The objective we have chosen is

quite simple. We wish to construct buckling independent group parameters

such that the homogeneous eigenvalue (i.e. the eigenvalue in the homoge-

nized lattice) will be equal to the heterogeneous eigenvalue to order B2.

Suitable parameters are defined, for one-group problems, in Section V.

It seems clear that corresponding multigroup parameters can be obtained

by straightforward generalization of the methods of Section V if the PI

transfer matrix is diagonal.

The diffusion coefficients defined in Section V are ratios of inte-

grals whose integrands contain importance functions. If we approximate

these importance functions by their average values we find that our D(A)

and D ( X )
 
become identically the same as Benoist's D I and D 2 , respectively.

This close connection between D and the diffusion coefficients required

to preserve k eff seems to provide some measure of justification for the

use of Benoist's method.

It is interesting to note, however, that if one advocates the use

of Benoist's method on such grounds one cannot, any longer, consider the

term

as a correction to D. The quantity D I will generally lie somewhere

within the interval bounded by the two values of D I . By adding a l to DI

one moves the x diffusion coefficient, from some point inside this inter-

val, to a new point close to one of its boundaries. But it is difficult

to see why either boundary value, Di(x B ), should be any more correct than

D.





If we take D
(A) and

(A)
 to be the "true" homogenized diffusion coef-

x

ficients there does not seem to be any simple expression for the errors

in D 1 and D 2 . In Section V we have tried to estimate the magnitude of

these errors in our test problem and have concluded that D I and 02 are

too large by about 3.4%. Such errors in Benoist's D's would produce a

1% error in k
eff 

in the reactor configuration under consideration here.

Now, our test problem is a one-group problem with group parameters cover-

ing the range from 1 to 10 MeV. In a multigroup adjoint computation the

group in question would contain "slowing-down" sources coupling it to

groups of lower energies. Because of the absence of such fictitious

slowing-down sources in the one-group adjoint equations it is possible

that the one-group and multigroup importance functions will be quite dif-

ferent in shape. Therefore one cannot assume that our estimate of the

errors in Benoist's D's will be very accurate. Nevertheless our results

do seem to indicate that these errors may be significant and should be

examined further.

Many weaknesses in the treatment of anisotropic diffusion remain.

The group parameters which enter into eigenvalue calculations would,

according to our proposal, be buckling independent. But if we are to

compute reaction rates which are correct to order B 2 the cross sections

used to compute these reaction rates cannot be buckling independent. We

see no way to circumvent this difficulty. Further the quantities

D (N) B 2 4) and D (x) B 2 4, are not simply leakage rates since D
(x) 

contains,
x x	 y Y

implicitly, contributions due to the buckling dependence of vE f and E
a

.

It is possible that the use of such a diffusion coefficient is not appro-

priate near interfaces. On the other hand, there seems to be no good
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theoretical foundation for any homogenization prescription near inter-

faces. Clearly, then, we cannot claim to have solved all the problems

involved in the computation of homogenized group constants. Yet, despite

all the remaining difficulties, it still seems important to require that

a homogenization procedure should preserve the heterogeneous eigenvalue,

in an infinite lattice, to order B2.

In closing we note that much of what has been said here is obviously

relevant in other geometries, as well as in slab geometry. Clearly our

arguments about eigenvalues and reaction rates are equally valid in any

periodic lattice. Perhaps it is not quite so obvious that the Benoist

and Bonalumi diffusion coefficients are generally double-valued in square

and hexagonal cells, just as they are in slab cells. Yet this is true.

Consider, for example, an array of rods in a square or hexagonal lattice.

It is customary (and convenient) to define a unit cell with the rod at

its center: but it is also possible to define a cell with a rod at each

corner of its boundary. Corresponding to each of these two possible

definitions of the unit cell we would get two values of the exact Benoist

diffusion coefficient, and two values of the Bonalumi coefficients.
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TABLE I

Test Problem Parameters

(Left- and right-hand boundaries are symmetry planes.
Source density has been set equal to vE f in each region.)

Region	 I
(Uranium Oxide)

Region	 II
(Sodium)

Region	 III
Uranium-Plutonium)

Thickness	 (cm) 1.0 1.25 0.25

Source Density 0.00998 O. 0.185

E
t

0.181551 0.0452915 0.252648

E 80
0.117890 0.0267661 0.0860426
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TABLE II

Parallel Diffusion Coefficients

in a Typical ZPPR Lattice

02	 (cm)

DP3-P 7 DP4-139 DP5-P11

2.8705 2.8740 2.8768

DP 3 -P 0 DP-P0 0P5-P0

6 2 	 (an) 2.8613 2.8707 2.8798

D 2 is computed from Eqs. (12), (36), and (39).

D 2 is the Benoist approximate D 2 , computed from
Eqs. (12), (13'), and (36').
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TABLE III

Diffusion Coefficients Normal to Plates

6 1

DP 3 -P 7 DP4-P9 DP,-PJ	 ii

2.759 2.765 2.769

D i

DP 3 -P 0 DP-P0 DP5-P0

2.772 2.771 2.771

5 1 is computed from Eqs. (14) and (35):

anisotropic source term

D I is comp uted from Eqs. (14") and (35"):
isotropic source term ucp.

41





TABLE IV

Coefficients for Diffusion Normal
to Plates, According to Benoist's

and Bonalumi's Prescriptions

D I	from Benoist's	 Definitions

Dixii)

DP 5

2.7775

B
DilxB)

DP5

2.7211

DP5

2.7677

DA'4xB)

DP 5

source = 11.

2.7754

D%xB)

DP5

source =	 ucl)

2.7460

D I	from Bonalumi's	 Definition

DI4x B )
DP 5

2.9182

B
Di{x13)

DP5

2.4378
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Fig. 1. ZPPR test problem configurations, showing two sets of "cell boundaries".

Plates of Types I, II, and III alternates in an infinite lattice.
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